
IJSRSET16236 | Received : 07 May 2016 | Accepted : 31 May 2016 | May-June 2016 [(2)3: 444-448]

© 2016 IJSRSET | Volume 2 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

444

Modified Huffman Algorithm for Image Encoding and Decoding

Sona Khanna, Suman Kumari

, Tadir

Department of Computer Science and Engineering, Guru Nanak Dev University RC, Gurdaspur, India

ABSTRACT

Lossless compression of a progression of symbols is a decisive part of data and signal compression. Huffman coding

is lossless in nature; it is also generally utilized in lossy compression as the eventual step after decomposition and

quantization of a signal. In signal compression, the disintegration and quantization part seldom manages to harvest a

progression of completely autonomous symbols. Here we present a schema giving prominent results than forthright

Huffman coding by exploiting this fact. We cleft the inceptive symbol sequence into two arrangements in such a

way that the symbol statistics are, sanguinely, different for the two possessions. Sole Huffman coding for each of

these disposition will reduce the average bit rate. This split is done recursively for each arrangement until the cost

league with the split is larger than the attainment. Assay was done on distinct signals. The harvest using the cleft

schema was a bit rate devaluation of ordinarily besides than 10% compared to forthright Huffman coding, and 0-

15% surpassing than JPEG-like Huffman coding, inimitable at low bit rates.

Keywords: Lossless Compression, Huffman Coding, Disintegration

I. INTRODUCTION

Huffman coding contrives variable-section codes, each

interpreted by an integer number of bits. Symbols with

higher anticipation get curtailed codewords. Huffman

coding is the best coding schema possible when

codewords are restricted to integer section, and it is not

too complex to implement [1]. It is therefore the

entropy-coding schema of elite in frequent applications.

The Huffman code tables usually required to be included

in the bunched file as side information. To avoid this

one could utilize a standard table derived for the relevant

class of data, this is an option in the JPEG compression

schema [4]. Another alternative is adaptive Huffman

coding as in [3]. While these mechanisms do not need

side information they utilize non-optimal codes and

consequently besides bits for the symbol codewords.

The efficiency of Huffman coding can often be

significantly bettered by the utilize of custom made

Huffman code tables. This possibility is also included in

the JPEG compression schema [4]. The mechanisms

utilized in this paper all utilize custom made Huffman

code tables. Huffman coding is adequate when integer

codeword sections are advisable for the symbol

sequence. Generally, this is the case when no symbols

have very high anticipation, especially no symbol should

have probability greater than 0.5. If the symbols

anticipation are 0.5, 0.25, 0.125, 0.0625 or fewer than

0.05 then a schema using integer codeword sections will

do quite well. Huffman codes do not exploit any

dependencies between the symbols, so when the

symbols are statistically dependent other mechanisms

may be much better.

II. METHODS AND MATERIAL

1.1 Lossy Signal Compression

Lossy signal compression often has the following steps

1. Decomposition.

2. Quantization, often with threshold.

3. Run Section and End Of Block coding.

4. Huffman coding.

Here we compare three different schemas for

compression: forthright, JPEG- like, and recursive Huff-

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

445

man coding. The two first steps are identical for all three

mechanisms, we utilize DCT and uniform quantization

with threshold. The results can then be interpreted in a

matrix where the rows are the frequencies and the

columns are time. The entries are the quantized values,

there are as frequent entries as there are samples in the

signal. The upper left part of this matrix may be

Table 1: Shows the Quantized values of the image

Since we have utilized a 16 points DCT, the matrix will

have 16 rows (bands) and each block is 16 samples. The

three different mechanisms utilized here all start with

this matrix of quantized bits, and utilize different ways

to form the symbol arrangement Forthright Huffman

Coding utilize only End of Block coding. The End of

Block symbol, (0), and the rest of the symbols are

formed from the quantized values according to this table

Table 2: Showing End of Block Coding

The symbol sequence after EOB coding for the example

above will then be:

9, 3, 0, 11, 1, 3, 0, 11, 7, 3, 0, 0, 8, 1, 1, 11, 0, 4, 2, 9, 0,

9, 1, 3, 0, 5, 4, 1, 2, 0, · · ·.

We note that there will be as frequent EOB symbols as

there are columns in the matrix, and that the symbol

sequence will be non-negative integers where the petite

ones are besides probable than the larger ones, utilize

symbols interpreted by small integers correspond to

small magnitude of the quantized values.

JPEG-like Huffman Coding makes the symbols the

clone way as JPEG does, each column of the matrix

correspond to the zigzag scanned sequence of a 8 × 8

pixel picture block in JPEG. The DC component and the

AC components are coded separately. The DC

component is DPCM coded and the symbols are

illustrate by the following table

Table 3: Showing Structure of the tree through Huffman

coding

Each symbol is followed by some supplementary bits to

uniquely give the DPCM difference. For the data

example this gives (the two last lines are stored) For the

AC component the zeros are run section coded. Each

symbol consists of two parts, the first part is the run that

tells how frequent zeros that precede the value (R), and

the second part is the value symbol (S). The value

symbols are the clone as the symbols utilized for the

DPCM differences. To completely specify the value

each symbol is succeeded by supplementary bits the

clone way as for the DPCM differences. The combined

symbol (interpreted as one integer) is 16R + S. Symbol

(0) is EOB. For the example data this gives

Table 4: showing the Quantized Values with preceding

zeros

Recursive Huffman Coding utilizes the clone symbol

sequence as forthright Huffman coding. Usually these

symbols are not independent, which expedient that the

true entropy (reduced limit for possible bit rate) is fewer

than zero-order entropy (reduced limit for bit rate for

Huffman code). The proposed schema takes advantage

of some dependencies in the symbol sequence and deeds

this in the Huffman coding procedure. The next two

sections of the paper explain the details of this

mechanism. Note that the mechanism has some

limitations. If the symbol sequence is highly correlated,

it will probably be better to try to improve the

decomposition part rather than to hope that this Huffman

coding schema will utilize all of the related. Also, if

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

446

integer codeword sections are not advisable then other

mechanisms may be much better.

2. Disband the Symbol Sequence

The basic idea is that by disband a long sequence into

several curtailed ones in a way that makes the symbol

anticipation (and the optimal code sections) different for

each sequence, then individual Huffman coding of each

sequence will reduce the total number of bits utilized for

the codewords. On the other hand, there will be besides

Huffman code tables to include. Clever disband

combined with adequate coding of the side information

should give an improvement in overall bit rate. We

choose to utilize a schema that first splits the symbol

sequence after End of Block coding into three

arrangements.

2.1. Disband into three Arrangement

When we examine the End of Block coded sequence we

make the following observations

• A symbol succeeding an EOB symbol (0) is the DC

component, or possibly another EOB symbol.

• An EOB symbol (0) will never succeed a (1)

symbol.

This may be exploited by creating three symbol

arrangements from the original sequence. The first

sequence contains the first symbol and the symbols

following a (0) symbol, the next sequence contains the

symbols following a (1) symbol, and the third sequence

contains all the other symbols. The key to success is that

the symbol anticipation will be different for this

arrangement. In fact only this disbands improve

forthright Huffman coding considerably. Using this

schema, the example sequence will be split as Original

EOB sequence: 9, 3, 0, 11, 1, 3, 0, 11, 7, 3, 0, 0, 8, 1, 1,

11, 0, 4, 2, 9, 0, 9, 1, 3, 0, 5, 4, 1, 2, 0, . . . First sequence:

9, 11, 11, 0, 8, 4, 9, 5, . . . Second sequence: 3, 1, 11, 3,

2, . . . Third sequence: 3, 0, 1, 0, 7, 3, 0, 1, 0, 2, 9, 0,

1, . . . Then each of these is dealt with independently of

each other and in the clone way by the recursive disband

part of the function.

2.2. Recursive Disband

The recursive disband part either

1. Splits the input sequence into two sub-arrangements,

this split is done either

(a) by cutting the sequence in the middle or

(b) by letting the previous symbol decide to which sub-

sequence the following symbol should be put into, and

then calls itself twice with each of the sub arrangement

as arguments or

 2. Does Huffman coding of the input sequence, that is

store the Huffman table information and the code words

into the output bit sequence. The decision rules are: If

the symbol sequence is long, 1.a is done. Else, we test if

disband (as in 1.b) will reduce the number of bits, and if

so, we split as in 1.b, else we do point 2. Cutting in the

middle (1.a) is one obvious way to split the symbol

sequence, especially if the signal is non-stationary.

When sequence section is larger than 2 15, the sequence

is split into two arrangement of half the section. This

ensure that no utilized symbol has a probability fewer

than 2−15. Then the given code word sections always

will be fewer or equal to 15, which is the maximum code

word section that we allow when we code the Huffman

tables. Disband by previous symbol (1.b) tries to utilize

related between successive symbols by letting the

previous symbol decide to which sub-sequence the

following symbol should be put into. The first

subsequence contains the symbols following a symbol

with a value fewer or equal than a limit value, the

second sub-sequence contains the other symbols

(including the first symbol). Using this schema with

limit value equal 1, one example sequence will be split

as Ex. sequence: 3, 0, 1, 0, 7, 3, 0, 1, 0, 2, 9, 0, 1, . . .

First sequence: 1, 0, 7, 1, 0, 2, 1, . . .

Second sequence: 3, 0, 3, 0, 9, 0, . . .

By using the median (of the numbers representing the

symbols in the original sequence) as this limit value, we

split into two approximately equal size sub- arrangement.

In addition, the split is done in such a way that we do not

need the decision rule or the limit value to be included

as side information.

3. Increased Side Information

The way we have done disband, very little side

information is needed to specify when and how to split a

sequence. In fact, we utilize only one bit to tell whether

a sequence is split or not. However, we need to include

as frequent Huffman tables as we have arrangement. To

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

447

keep this side information small we put a bit of effort

into doing a great job on compact storing of these tables.

This effort pays off; our schema often utilizes fewer than

one third of the bits to store the Huffman tables,

compared to what JPEG utilizes. Let us start by looking

at how JPEG store the Huffman tables.

3.1. JPEG Huffman table specification usually this

side information is relatively small, and consequently

not much effort has been utilized in representing this in

few bits. JPEG utilize a special segment, the DHT

market segment structure, to specify a Huff- man table

[4]. In this segment, one byte are utilized to tell how

frequent symbols there are with code section i, for i = 1 :

16, then follows the symbols with one byte for each.

This requires (16 + N) bytes for N symbols.

3.2. Efficient Huffman table specification We tried

several different ad-hoc mechanisms to store the

Huffman tables. The problem was to find a mechanism

that performed well for all possible Huffman tables. We

ended up with a mechanism that performed quite well,

which we will now briefly describe. This mechanism

utilizes 4 bits to give section of first symbol, then for

each of the next symbols a code to tell its section where

Table 5: Showing the meaning of the various symbols

This way of coding the Huffman tables utilize the fact

that adjacent symbols often have approximately the

clone probability, and thus approximately the clone

codeword sections.

III. RESULTS AND DISCUSSION

Simulations and Comparison

The signals which are utilized in the simulation are in

the form of images. The image is encoded and then

decoded using the Huffman algorithm. The algorithm

will produce the result in terms of the entropy and

entropy error. The result of the image is shown as

Figure 1. Showing the result of the Huffman

coding and decoding

The Huffman coding and decoding is implemented

on the other images also and desired result is

obtained. Multiple images are utilized in order to

analyze the algorithm for consistency.

Figure 2: showing the image encoding and decoding

using Recursive Huffman coding

The Recursive Huffman encoding is much faster as

compared to iterative Huffman encoding. The proposed

algorithm is faster by 5% then the iterative Huffman

algorithm. The result comparison will be given through

the following table

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

448

The following table shows the Iterative Huffman coding

result

 Entropy Entropy

Error

Speed

Huffman

Algorithm

5.067

5.789

4.567

4.892

4.557

5.087

5.769

4.527

4.110

4.235

0.566

0.899

0.987

0.456

0.787

0.564

0.829

0.787

0.356

0.487

2.223

2.122

2.234

2.123

2.222

2.987

2.673

2.323

2.099

2.876

Table 7 : Showing the Result of Recursive Huffman

Coding

The proposed algorithm results are better as compared to

the iterative Huffman coding.

IV. CONCLUSION

Both on real world signals and a synthetic signal the

proposed Huffman coding schema does considerably

better than forthright Huffman coding, and usually better

than JPEG-like Huffman coding, especially at low bit

rates.

V. REFERENCES

[1] Allen Gersho and Robert M. Gray. Vector

Quantization and Signal Compression. Kluwer

Academic Publishers, Boston, 1992. ISBN 0-7923-

9181-0

[2] Massachutilizetts Institute of Technology. The

MIT-BIH Arrhythmia Database CD-ROM, 22nd

edition, 1992.

[3] Mark Nelson, Jean-Loup Gailly. The Data

Compression Book. M&T Books, New York, USA,

1996. ISBN 1-55851-434-1

[4] William B. Pennebaker, Joan L. Mitchell. JPEG:

Still Image Data Compression Standard. Van

Nostrand Reinhold, New York, USA, 1992. ISBN:

0442012721

[5] Seismic Data Compression ReferenceSet.

http://www.ux.his.no/~karlsk/sdata/

[6] N. Kaur, “A Review of Image Compression Using

Pixel Correlation & Image Decomposition with,”

vol. 2, no. 1, pp. 182–186, 2013.

[7] A. S. Arif, S. Mansor, R. Logeswaran, and H. A.

Karim, “Auto-shape Lossless Compression of

Pharynx and Esophagus Fluoroscopic Images,” J.

Med. Syst., vol. 39, no. 2, pp. 1–7, 2015.

[8] W. M. Abd-elhafiez and W. Gharibi, “Color I mage

C ompression A lgorithm B ased on the DCT B

locks,” vol. 9, no. 4, pp. 323–328, 2012.

[9] R. a.M, K. W.M, E. M. a, and W. Ahmed, “Jpeg

Image Compression Using Discrete Cosine

Transform - A Survey,” Int. J. Comput. Sci. Eng.

Surv., vol. 5, no. 2, pp. 39–47, 2014.

[10] G. Badshah, S. Liew, J. M. Zain, S. I. Hisham, and

A. Zehra, “Importance of Watermark Lossless

Compression in Digital Medical Image

Watermarking,” vol. 4, no. 3, pp. 75–79, 2015.

[11] S. Stolevski, “Hybrid PCA Algorithm for Image

Compression,” pp. 685–688, 2010.

[12] R. C. . Gonzalez and R. E. Woods, “Digital Image

Processing,” p. 976, 2010.

[13] D. G. Sullivan and D. Ph, “Binary Trees and

Huffman Encoding Binary Search Trees Fall

2012,” 2012.

[14] T. Gebreyohannes and D. Kim, “a Daptive Noise

Reduction Scheme for Salt and Pepper.”

[15] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-

and-Pepper noise removal by median-type noise

detectors and detail-preserving regularization.,”

IEEE Trans. Image Process., vol. 14, no. 10, pp.

1479–85, 2005.

[16] S. Kaisar and J. Mahmud, “Salt and Pepper Noise

Detection and removal by Tolerance based

selective Arithmetic Mean Filtering Technique for

image restoration,” Ijcsns, vol. 8, no. 6, pp. 271–

278, 2008.

[17] G. Nelapati, “ISSN No . 2278-3091 International

Journal of Advanced Trends in Computer Science

and Engineering Available Online at

http://warse.org/pdfs/ijatcse03132012.pdf Salt and

Pepper Noise Detection and removal by Modified

Decision based Unsymmetrical Trimmed Med,”

vol. 1, no. 2278, pp. 93–97, 2012.

[18] A. Singh, U. Ghanekar, C. Kumar, G. Kumar, and

N. I. T. Kurukshetra, “An Efficient Morphological

Salt-and-Pepper Noise Detector,” vol. 875, pp.

873–875, 2011.

[19] X. Zhang, F. Ding, Z. Tang, and C. Yu, “Salt and

pepper noise removal with image inpainting,” AEU

- Int. J. Electron. Commun., vol. 69, no. 1, pp. 307–

313, Jan. 2015.

